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A numerical investigation of electrohydrodynamics of an initially spherical droplet
suspended in a continuous fluid subjected to shear flow in the presence of an electric field
is presented. The numerical framework is based on coupling of a multicomponent lattice
Boltzmann method with a leaky dielectric model. Simulations reveal distinct deformation
and breakup behavior of the droplet for a fixed channel confinement and for widely
different viscosity ratio λ. For each λ, defined as ratio of droplet to outer fluid viscosity
(λ = μd/μc), computations are performed for two specific combinations of electrical prop-
erties given by ratios of conductivity R(= σd/σc ) and permittivity S(= εd/εc ). Simulations
show that the droplet orients toward the direction of shearing motion for R < S, whereas it
orients along the direction of applied electric field when R > S. For R > S, the droplet
elongation increases with an increase in electric field and breakup of the droplet into
smaller droplets is observed beyond a threshold value. The application of electric field
also results in the breakup of highly viscous droplets which otherwise are very difficult
to break in shear flows. In contrast, the droplet elongation for R < S is observed to be
dependent upon the competing interplay of electric and shear stresses acting at the droplet
interface. The cumulative effect of electric field and shear flow alters the shear stress acting
at the droplet interface, thereby leading to a deviation in the droplet dynamics when R < S.

DOI: 10.1103/PhysRevFluids.4.033701

I. INTRODUCTION

In the past decade, microfluidic technologies have evolved rapidly and have found applications
in systems including food processing, pharmaceuticals, and material synthesis [1]. The processing
of these systems in a microfluidics platform involves deformation, breakup, or coalescence of
droplets in a confined flow configuration. The mechanical properties and rheology of the resulting
system are governed by the size and morphology of droplets and can be further elevated by an
improved understanding of droplet dynamics in confined flow configuration. While actual cases are
exceedingly intricate, the study of a single droplet has been considered as a fundamental problem
and can provide better insight into the factors involved in more complex cases.

Deformation or breakup of a droplet due to shear flow imposed by two plates moving in opposite
directions has been extensively studied and reviewed in the literature [2–6]. In the classical problem
analyzed by Taylor [2,6], a droplet of radius a, suspended in another immiscible fluid in an
unconfined domain, on the application of shear flow to the continuous fluid was shown to either
deform into an ellipsoidal shape with its major axis inclined at an angle with the flow direction or
break into smaller droplets. The deformation induced in the droplet was expressed as

D = 19λ + 16

16λ + 16
Ca, (1)
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where Ca = αaμc/γ is the capillary number and λ = μd/μc is the viscosity ratio. Here α = 2u/H
is the shear rate, H is the distance between the plates, γ is the interfacial tension, and μ is the
dynamic viscosity. Subscripts c and d denote the continuous fluid and droplet, respectively. Further,
Taylor [6] experimentally observed that above a threshold value of capillary number (critical
capillary number, Cacrit) the droplet breaks up. The critical capillary number is a function of the
viscosity ratio and the relationship between Cacrit and λ was analyzed experimentally by Grace [3].
As the separation H between the two moving wall decreases, the droplet dynamics is also governed
by the confinement ratio ζ = 2a/H besides Ca and λ [7]. Confinement can result in the formation of
highly elongated steady droplet shapes, which otherwise would be unstable in an unconfined domain
[8]. Further, confinement promotes breakup of droplets when λ > 4 and inhibits breakup for λ < 1
scenarios [9,10]. For λ = 1, Cacrit approaches a minima at ζ = 0.5 and any further increase in the
confinement results in an increase in the critical capillary number [10].

Manipulation of droplets can be also achieved by the application of an electric field [11–18],
where the difference in electrical properties of the droplet and continuous fluid lead to an electric
stress at the droplet interface [12]. The magnitude of the electric stress acting on the droplet interface
depends strongly on the electric conductivity and dielectric permittivity of the fluids. If the droplet
is a perfect conductor or a perfect dielectric liquid and the outer fluid is considered to be a perfect
insulator, the application of electric field results in the deformation of the droplet along the direction
(prolate) of electric field. In contrast, and as observed experimentally by Allan and Mason [11], a
weakly conducting droplet immiscible and immersed in a weakly conducting fluid can deform either
along (prolate) or normal (oblate) to the direction of electric field. This fluid behavior was explained
by Taylor [14], who identified that weakly conducting (leaky dielectric) fluids can conduct small
amounts of charge to the droplet interface. The theoretical predictions [14] and experimental results
[17,19] show that for a fixed conductivity ratio R = σd/σc and permittivity ratio S = εd/εc, the
droplet elongation increases with an increase in the electric field strength. Further, experimental
[17,19] and numerical [20] analyses show that the droplet no longer attains a quasisteady profile,
but rather breaks, depending upon the relative magnitude of R and S beyond a critical electric field.
For R < S, the droplet stretches across the field direction and breaks into two equally sized droplets
[15]. On the other hand, the droplet breaks up either due to end pinching followed by capillary
instability or by elongating into a thin thread with formation of several necks along the thread for
R > S, depending upon the viscosity ratio of the fluids [15,19].

While droplet manipulation using an electric field or shear flow has been the subject of many
investigations, the combined effect of electric field and shear flow on a droplet has received very
little attention [11,21–23]. The deformation and breakup of a droplet under the combined influence
of electric field and shear flow in an unconfined domain was first experimentally analyzed by
Allan and Mason [11]. The deformation and orientation induced in the droplet were observed to
be dependent upon the strength of shear flow, electric field, and physical properties of the fluids.
An analytical solution was proposed by Vlahovska [21] to quantify small deformations induced in
a droplet subjected to electric field and shear flow in an unconfined domain. Recently, the effect of
electric field on a droplet suspended in a simple shear flow configuration was analyzed analytically
by Mandal et al. [22], albeit for small deformations only. Numerical simulations were performed by
Mählmann and Papageorgiou [23] using the level-set technique to determine the effects of electric
field and shear flow on a periodic array of droplets placed in a confined geometry. However, the
computations performed were two dimensional in nature.

Thus, an accurate fundamental understanding of three-dimensional droplet behavior in confined
flows and subjected to an electric field is still missing in the literature. This analysis of droplet
behavior is of significant importance in the realm of microfluidics, where many biofluidic and
biomedical applications involve droplet manipulation using an electric field. Motivated by this
consideration, in the present work a numerical investigation of a spherical droplet immersed in a
confined Couette flow configuration and subjected to a transverse electric field has been carried
out. Both the droplet and the continuous media are considered to be leaky dielectric fluids. The
numerical simulations are performed by employing a coupled leaky dielectric and multicomponent
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FIG. 1. Schematic of a droplet of initial radius a suspended in a confined Couette flow configuration under
the influence of an electric field. The initial droplet profile is represented by a dashed line and the elongated
profile is denoted by a solid line. The deformed droplet is oriented at an angle θ with the horizontal direction.
The major and minor axes of the droplet are denoted by L and B. The droplet and the outer fluid are assumed
to be immiscible and the density of both the fluids is considered to be the same. The top and bottom walls of
the domain are separated from each other by a distance H and are moving in the opposite direction. An electric
field E is acting along the vertical direction.

lattice Boltzmann method [24,25]. Under the combined effect of shear and electric field, the droplet
behavior for a wide span of viscosity ratios has been investigated. Further, for a fixed viscosity
ratio, the deviations observed in the the droplet behavior for a specific combination of electrical
properties R > S and R < S have also been examined. This is the only study that quantitatively
captures the three-dimensional deformation and breakup behavior of an initially spherical droplet
when immersed in a confined shear flow and subjected to an electric field.

II. MATHEMATICAL FORMULATION

A schematic illustration of a droplet of radius a suspended in a confined Couette flow configura-
tion is shown in Fig. 1. The initial droplet profile is represented by a dashed line and the stretched
profile is indicated by a solid line. The major and minor axes of the elongated droplet are denoted
by L and B, respectively. The droplet and the continuous fluids are assumed to be immiscible and
considered as leaky dielectric fluids. The top and bottom walls of the domain are separated from
each other by a distance H and translate along the x direction with velocity u = (uo, 0, 0) and
u = (−uo, 0, 0), respectively. Further, the top wall of the domain is maintained at electric potential
U = Uo while the bottom wall is grounded. The electrohydrodynamic behavior of the droplet
suspended in a confined shear flow configuration has been analyzed by using a multicomponent
low spurious current lattice Boltzmann method coupled with leaky dielectric model [24,25]. A brief
outline of the method is described below.

The lattice Boltzmann method (LBM) involves the solution of the discretized Boltzmann equa-
tion for the particle distribution function. Within the framework of this model, separate distribution
functions are defined for each phase [26]. In the current case, the droplet and the continuous fluids
are denoted by two different distribution functions, namely fi,d and fi,c, respectively. Using the
distribution functions, the macroscopic density of each fluid can be obtained as

ρk (x, t ) =
∑

i

fi,k . (2)

Here, subscript k denotes the droplet (d) or outer fluid (c). The droplet and the continuous media
are separated from each other by a diffused interface across which the fluid properties undergo
a continuous variation. To achieve this, a color function C based on the density of each fluid is
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defined, expressed as

C(x, t ) = ρc(x, t ) − ρd (x, t )

ρc(x, t ) + ρd (x, t )
. (3)

The value of C varies insignificantly in the pure phase and undergoes a smooth transition across the
fluid-fluid interface, thereby creating a diffused region separating the two immiscible fluids.
The unit normal vector n to this diffused interface can be obtained using the gradient of the color
function, defined as

n = − ∇C

|∇C| . (4)

Since C varies significantly only across the fluid-fluid interface and is nearly constant in the bulk
of each fluid, the normal vector n is calculated at the interface region where the color function
is nonzero. This unit normal vector can be further used to determine the local curvature κ of the
diffused interface, expressed as

κ = 1

Rc
= −∇S · n, (5)

where Rc is the local radius of curvature of the diffused interface and ∇S is the surface gradient
operator [27–29].

In the multicomponent model, the droplet and the continuous fluid undergo collision as a mixed
fluid in which the particle distribution function fi,T (x, t ) is given as

f t
i,T (x, t ) = fi,c(x, t ) + fi,d (x, t ), (6)

with the relaxation time as

τ (x, t ) = τcρc(x, t ) + τdρd (x, t )

ρc(x, t ) + ρd (x, t )
. (7)

Here τd and τc are the dimensionless relaxation times [30,31] of the droplet and outer fluid,
respectively. The source term incorporating the interfacial force FI is incorporated in the collision
equation and is given as [32]

�I = wi

(
1 − 1

2τ

)[
ei − u

c2
s

+ (ei · u)

c4
s

ei

]
· FI , (8)

where ei, ui, and wi are the lattice velocity vectors, macroscopic velocity, and weight function [24],
respectively. FI is the body force term due to interfacial tension, defined as

FI = − 1

2Rc
γ∇C (9)

After collision, color segregation step is applied to determine the postcollision distributions of the
droplet and continuous fluid, given as [33]

f t
i,c = ρc

ρd + ρc
f t
i,T + wiβ

ρcρd

ρc + ρd
cos θ f |ei|, (10)

f t
i,d = ρd

ρd + ρc
f t
i,T − wiβ

ρcρd

ρc + ρd
cos θ f |ei|. (11)

Here β is the antidiffusion parameter and is fixed to 0.7 to keep the spurious currents low and
maintain a narrow interface thickness [28]. After the color segregation step, each fluid undergoes
a streaming operation and the resulting distribution function is used to determine the macroscopic
density of each fluid [Eq. (2)].
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To model the electrostatic part, the local electrical properties are assumed to vary as

ε(x, t ) = εcρc(x, t ) + εdρd (x, t )

ρc(x, t ) + ρd (x, t )
, (12)

σ (x, t ) = σcρc(x, t ) + σdρd (x, t )

ρc(x, t ) + ρd (x, t )
, (13)

where εd (εc) and σd (σc) are dielectric permittivity and electrical conductivity of the droplet
(continuous) fluid. In the presence of an electric field E, the transition of electrical properties at
the droplet interface results in an electric stress (Maxwell stress) at the droplet interface, expressed
as [34]

TE = ε
(
EE − 1

2 E2I
)
. (14)

The effect of the electric stress on the droplet interface is also included in the lattice Boltzmann
equation by incorporating a source term due to the electric field, expressed as

�E = wi

(
1 − 1

2τ

)[
ei − u

c2
s

+ (ei · u)

c4
s

ei

]
· FE , (15)

where FE is the body force due to electric stress [34]. The inclusion of �E with �I results in the
coupling of multicomponent hydrodynamics with dynamics of leaky dielectric fluids.

The electric stress acting on the droplet interface was calculated as follows. The electric field
applied on the system is related to the electrical conductivity and free charge density ρ f by the
charge conservation equation [35]

∂ρ f

∂t
+ ∇ · (ρ f u + σE) = 0, (16)

where ρ f = ∇ · (εE). Since the charge relaxation timescale is small compared with other
timescales, the problem can be assumed to be electrostatic [36]. Equation (16) then can be expressed
as

∇ · (σE) = 0. (17)

As electric field in electrostatics is considered to be irrotational, E can be expressed as

E = −∇U . (18)

In terms of electric potential, Eq. (17) becomes

∇ · (σ∇U ) = 0. (19)

The electric potential distribution in the system is determined by solving Eq. (19) using a
finite-difference formulation. The gradients are approximated by using the second-order central
differencing scheme at the interior nodes and second-order forward or backward differencing
scheme at the boundary nodes of the computational domain. Using the electric potential distribution,
the electric field in the system is determined by using Eq. (18).

III. RESULTS AND DISCUSSION

The physical parameters that can influence the electrohydrodynamic behavior of a droplet
suspended in confined shear flow can be used to define seven independent dimensionless numbers:
capillary number Ca = αaμc/γ , Reynolds number Re = αa2ρ/μc, viscosity ratio λ = μd/μc,
confinement ratio ζ = 2a/H , electric capillary number CaE = εcE2

o a/γ , electrical conductivity
ratio R = σd/σc, and dielectric permittivity ratio S = εd/εc. Before analyzing the droplet behavior
under the cumulative effect of shear flow and electric field, the individual effects of an electric field
and shear flow on a droplet are examined. First, the behavior of a droplet immersed in another
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FIG. 2. Comparison of droplet deformation D predicted by the analytical solution of Taylor [14] and our
numerical simulations.

immiscible fluid and subjected to an electric field is simulated. Under the influence of an electric
field, the droplet deforms either along the electric field (prolate) or orthogonal to the electric field
(oblate) [12] depending upon the values of R and S. In the Stokes flow limit, the deformation induced
in the droplet can be written as [14]

D = 9CaE

16

φ(R, S, λ)

(2 + R)2
, (20)

where

φ(R, S, λ) = R2 + 1 − 2S + 3

5
(R − S)

2 + 3λ

1 + λ
, (21)

It should be noted that Eq. (20) is applicable only for D � 1 [12]. In Eq. (21), φ is the
discriminating function which determines the direction of the droplet deformation [14]. Figure 2
shows a comparison of the droplet deformation D obtained from our simulations and the analytical
solution [Eq. (20)] for different values of electrical conductivity ratio while keeping the values of
other parameters fixed at CaE = 0.2, S = 0.5, and λ = 1. The solid lines in Fig. 2 corresponds to
the analytical solution whereas the symbols represent the droplet deformation obtained from the
present mathematical model [24,25]. Clearly, deformation induced in the droplet predicted from
simulations is in good agreement with the analytical solution. The simulation predictions deviate
from the analytical solution when D approaches 0.1, understandably because of the assumption of
small deformation (D � 1) used in deriving the analytical solution. Further validation of the model
by varying the interfacial tension and electric field is shown in our previous work [24].

Additionally, droplet deformation D does not vary significantly with change in the viscosity ratio
λ, as indicated by Eq. (20). Our simulations correctly predict this behavior with variation of the
viscosity ratio. To prove this, we performed simulations for λ = 0.2, 1 and 5 with R = 2.4 and
S = 0.5. The results obtained are shown in Table I and demonstrate an insignificant variation in
deformation parameter D as a function of λ.

Further validation of the model has been carried out by comparing the flow field induced inside
and outside of the droplet in the presence of electric field with the analytical solution [13]. The

TABLE I. Comparison of the droplet deformation D obtained using the analytical solution and the
mathematical model used in the present work for different viscosity ratios.

λ D (analytical) D (numerical)

0.2 0.050 0.051
1 0.050 0.051
5 0.050 0.051
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FIG. 3. Comparison of radial and angular velocity components obtained from the present mathematical
model and analytical solution for θ = π/4.

velocity induced inside and outside the droplet along the polar coordinates r and θ is given by

vr =
{

A
(

r
a

)[
1 − (

r
a

)2]
(3sin2θ − 1) r � a,

A
(

a
r

)2[( a
r

)2 − 1
]
(3sin2θ − 1) r � a,

(22)

and

vθ =
{

A
2

[ − 3
(

r
a

) + 5
(

r
a

)3]
r � a,

A
(

a
r

)4
r � a,

(23)

where

A = −0.9E2
o aεc(R − S)

(2 + R)2(1 + λ)μc
. (24)

Figure 3 shows a comparison of the velocity field predicted by our model and the analytical solution
for θ = π/4. The solid and dashed lines in Fig. 3 correspond to the analytical result and the solid
symbols represent the values obtained from the present mathematical model. Clearly, the num-
erically obtained velocity field inside and outside the droplet is in good agreement with the analytical
solution.

Next, the deformation and breakup behavior of a droplet suspended in a shear flow configuration
in the absence of electric field is examined. As reported in previous experimental and theoretical
studies [7,9,10,37,38], the dynamics of a droplet immersed in a confined shear flow configuration
is governed by Ca, λ, and ζ = 2a/H . For a fixed value of ζ and λ, the droplet elongation increases
with increase in Ca and for Ca � Cacrit the droplet breaks up into smaller droplets. For λ = 1
and ζ = 0.5, the numerical and experimental analysis performed by Janssen et al. [10] indicate
that steady ellipsoidal shapes of the droplet were obtained for Ca � 0.35. A slight variation in the
numerical and experimental values of Cacrit was reported in Ref. [10], where Cacrit = 0.37 and 0.40
were obtained from numerical and experimental investigations, respectively. Numerical analysis
performed by Li et al. [39] for λ = 1 and ζ = 0.5 also reported droplet breakup at Ca = 0.40,
further implying that Cacrit ≈ 0.40 for droplet breakup at λ = 1 and ζ = 0.5. For λ = 1 and
ζ = 0.5, this deformation and breakup behavior of a droplet is simulated using our multicomponent
model. The model is validated by comparing Cacrit required for the droplet breakup with the value
reported in previous studies [40]. The simulations are carried out on a computational domain of size
25a × 4a × 4a. Periodic boundary conditions are applied along the flow and transverse direction.
No-slip boundary condition is applied along the top and bottom boundaries of the domain, given
as [41]

f̃i(x, t + δt ) = fi′,t (x, t ) + 2
ρwi

c2
s

u · ei, (25)
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TABLE II. Deformation parameter obtained corresponding to the droplet radius and grid spacing used in
grid independence study at Ca = 0.35, Re = 0.1, and λ = 1.

Description Droplet radius Grid resolution Deformation parameter, D

Mesh 1 (coarse grid) 10 250 × 40 × 40 0.452
Mesh 2 (regular grid) 15 375 × 60 × 60 0.483
Mesh 3 (fine grid) 20 500 × 80 × 80 0.496

where i′ is the direction opposite to i. The droplet behavior is examined for Ca = 0.35 and Ca =
0.40 at Re = 0.1. The droplet evolved into an ellipsoidal shape for Ca = 0.35, whereas binary
breakup of the droplet is obtained for Ca = 0.40. This suggests that the critical capillary number
required for the droplet breakup lies in the range of 0.36 to 0.4, which is in qualitative agreement
with the work of Janssen et al. [10]. The interface between the drop and the surrounding medium
is defined at locations where C = 0. To ensure mesh independence of numerical results, a grid
sensitivity study is performed by comparing the deformation parameter D obtained at Ca = 0.35
for three different mesh sizes. The deformation parameter is quantified as D = (L − B)/(L + B),
where L and B are the length of the major and minor axes of the deformed droplet as shown in
Fig. 1. The description of the grid spacing, droplet radius, and the obtained deformation D are given
in Table II. As the results obtained using the mesh of 375 × 60 × 60 show good agreement with
the fine grid, it is used for further simulations.

Figure 4 shows the evolution of the droplet shape for Ca = 0.35 and Ca = 0.4 at various values
of dimensionless time t∗, defined as t/T , where T = a/uo and uo is the wall velocity. The sequence
of images in Fig. 4(a) shows the evolution of the droplet shape from sphere to a prolate ellipsoid
at Ca = 0.35, with the droplet axis inclined at an angle with the flow direction. For Ca = 0.40, the
time evolution of the droplet shape is shown in Fig. 4(b). As depicted at time t∗ = t/T = 5, the
application of shear flow leads to the elongation of the droplet. After some time, a waist is formed
near the droplet center which contracts continuously with increase in droplet deformation (t∗ = 15
and 20). The gradual rise in the droplet elongation leads to the development of a neck near the
droplet center (t∗ = 26). The continuous thinning of the neck (t∗ = 28 and 31) eventually results in

t* = 0

t* = 5

t* = 20

t* = 31
(a) Ca = 0.35

t* = 0

t* = 5

t* = 15

t* = 20

t* = 26

t* = 28

t* = 31

t* = 34

(b) Ca = 0.4

x
y

z

FIG. 4. Shape evolution of a droplet immersed in a confined Couette flow configuration with confinement
ratio ζ = 0.5 and Re = 0.1 in a computational domain of size 25a × 4a × 4a. The droplet and the surrounding
fluid were assumed to have equal viscosities. For Ca = 0.35, the droplet deforms into a steady ellipsoidal
shape with its axis inclined at an angle with the flow direction. The droplet elongates indefinitely in the case of
Ca = 0.4, leading to the binary breakup of the droplet.
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the breakup of droplet (t∗ = 34). This evolution of the droplet profile with time at Ca = 0.4 is in
quantitative agreement with simulation data available in literature [40].

Subsequently, dynamics of a droplet in a confined shear flow configuration under the influence
of an electric field has been analyzed. The size of the computational domain is taken as 375 × 60
× 60 and the droplet radius is considered as 15 lattice units. To apply an electric field E, a potential
difference between the top and bottom wall of the domain is imposed (as shown in Fig. 1). Two
pairs of leaky dielectric fluids with (R, S) as (10,2) (case A) and (0.1, 0.5) (case B) are considered,
respectively. Examples of such systems are droplet of castor oil immersed in silicone oil, and vice
versa. The experimental values of these oils as reported in Ref. [19] are R = 10 and S = 1.37 for
the analog to case A, and R = 0.1 and S = 0.73 for that of case B. Simulations are performed for
λ = 0.1, 1, and 10 in order to examine the effect of viscosity ratio on the deformation and breakup
behavior of the droplet.

For λ = 1, Fig. 5 shows the time evolution of droplet deformation and orientation angle
corresponding to case A (R > S) at Ca = 0.2 and 0.3 for a range of values of CaE = 0, 0.1, 0.2, 0.4,
and 0.6. The droplet deformation and angle of orientation have been quantified in terms of length
of the major axis L and angle of orientation θ as shown in Fig. 1, respectively. As a convention, the
initial orientation angle under the influence of shear only (i.e., for CaE = 0) is taken as π/4 [42]
with reference to the flow direction. This approach is adopted because the shear stress acting on
droplet interface tends to deform a droplet initially into an ellipsoid with its major axis along the
direction of strain rate in the absence of an external electric field. To quantify the effect of applied
electric field over and above the prevailing shear flow, we follow the same convention of reporting
the orientation angle. However, the apparent overshoot only for scenarios with R > S is an artifact
due to the assumption that the major axis of the undeformed sphere is oriented at an angle of π/4 at
t∗ = 0. This overshoot would have not been observed if the initial orientation angle, which can be
chosen arbitrarily for a sphere, had been selected as π/2.

The simulations reveal that the application of electric field leads to an increase in the elongation
and orientation of the droplet along the direction of applied electric field. For instance, at Ca = 0.2
and CaE = 0 the droplet attains a maximum elongation of L/2a = 1.36 and θ ≈ 30◦, whereas L/2a
and θ are 1.42 and 33◦ for CaE = 0.1 at equilibrium, respectively. The droplet elongation and
orientation increases monotonically with increase in CaE . For a fixed Ca, breakup of the droplet into
smaller droplets is observed as CaE � CaE ,crit . Moreover, CaE ,crit required for the droplet breakup
decreases with increase in Ca. For Ca = 0.2, the droplet breakup occurs at CaE = 0.4, whereas for
Ca = 0.3 the droplet breakup is observed at CaE = 0.2. This behavior is observed to be analogous
to that of a droplet placed in shear flow for Re > 1 (in the absence of an electric field), where Cacrit

for droplet breakup decreases with increase in Re [39,43].
Figure 6 shows the sequence of events in the evolution of the droplet to a steady ellipsoid or

breakup into smaller droplets for Ca = 0.3 at CaE = 0.0, 0.2, 0.4, and 0.6. Time t∗ = 0 shows
the initial configuration of the droplet subjected to shear flow and electric field. The deformation
induced in the droplet can be visualized by comparing the droplet profile for CaE = 0.0, 0.2, 0.4,

and 0.6 at t∗ = 7. The simulation results for CaE = 0 show that the droplet attains a steady shape
over a period of time. In contrast, the droplet is deformed continuously leading to the formation
of bulbous ends separated from each other by a thin thread for CaE = 0.2, 0.4, and 0.6, with
elongation induced in the droplet increasing with CaE . Further stretching of the droplet results
in the formation of bulbous ends separated from each other by a thin thread. This thinning thread
is unstable, eventually leading to the bulbs pinching off to form new droplets as depicted in the
last column of Fig. 6. For CaE = 0.2, the droplet breakup results in the formation of two daughter
droplets, where the original volume of the spherical droplet is equally shared among the resulting
droplets. If the original droplet volume is not completely used up by the daughter droplets, the ends
of the remaining volume retract either to form a droplet at the center (CaE = 0.4) or “bulb up”
(CaE = 0.6) in a process similar to retractive end pinching [39].

The droplet behavior for R < S (case B) at λ = 1 is significantly different from that observed
when R > S (case A), except that at equilibrium irrespective of R and S the droplet attains a steady
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FIG. 5. Evolution of elongation and orientation angle of the droplet corresponding to case A with R = 10
and S = 2, and λ = 1 for [(a) and (b)] Ca = 0.2 and [(c) and (d)] Ca = 0.3 as CaE is varied in the range of 0,
0.1, 0.2, 0.4, and 0.6, respectively. Time t has been normalized using T = a/uo, where uo is the wall velocity.
The confinement ratio is considered to be fixed ζ = 0.5. The orientation angle initially increases and after
attaining a peak value it decreases. For a fixed Ca, the droplet elongation increases within CaE and beyond a
critical CaE droplet breakup occurs.

prolate ellipsoidal shape inclined at an angle with the shear flow direction. While the orientation
angle decreases continuously with CaE , the droplet elongation does not change monotonically with
CaE . The time evolution of the droplet profile obtained by varying CaE from 0 to 0.6 for Ca = 0.2
and 0.3 is depicted in Fig. 7. The orientation angle for both Ca = 0.2 and 0.3 decreases as CaE is
increased from 0 to 0.1. A further increase in CaE leads to a further decrease of the orientation angle,
thereby indicating that the droplet orients itself toward the mean flow direction. The elongation
induced in the droplet decreases for both Ca = 0.2 and 0.3 as CaE is increased from 0 to 0.1. For
Ca = 0.2, a negligible change in the droplet elongation is observed as CaE is increased from 0.1
to 0.6, whereas for Ca = 0.3 the droplet elongation increases on increasing CaE from 0.1 to 0.6. In
contrast to case A, no droplet breakup is observed in case B. The steady-state profiles of the droplet
obtained for Ca = 0.2 and 0.3 at CaE = 0 and 0.6 are shown in the inset image of Figs. 7(b) and 7(d).
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FIG. 6. A sequence of shape evolution of a leaky dielectric droplet at Ca = 0.3 and ζ = 0.5 for (a) CaE=0,
(b) CaE = 0.2, (c) CaE = 0.4, and (d) CaE = 0.6. The fluids represent case A (R = 10 and S = 2) and are
assumed to have equal viscosities. Figure 6(a) shows the evolution of the droplet into a prolate ellipsoid in the
absence of electric field, whereas Fig. 6(b) depicts the breakup of the droplet into smaller droplets at CaE = 0.2.
This indicates that the critical capillary number required for the droplet breakup in the absence of an electric
field varies with the application of electric field. With increase in CaE , the deformation induced in the droplet
increases and the droplet breakup transitions from binary to multiple breakup.

So far, the results in Figs. 5–7 for a fixed Ca indicate that the breakup of a droplet corresponding
to case A (R > S) can be achieved at lower CaE as compared to case B (R < S). Further, the
mechanism of droplet deformation and breakup in case A is analogous to the behavior of a droplet
placed in shear flow with Re > 1 [43]. Next, the viscosity ratio is varied to investigate the effect of
applying an electric field in scenarios where viscosities of the two fluids differ substantially.

IV. EFFECT OF VISCOSITY RATIO

The deformation and breakup behavior of a droplet in a confined shear flow configuration is
greatly influenced by the relative viscosities of the droplet and continuous fluid [10]. A droplet
for λ > 5 immersed in a shear flow configuration remains nearly spherical and tumbles toward the
mean flow direction, thereby making it difficult to achieve droplet breakup. On the other hand,
application of shear flow on a droplet for λ < 1 results in the formation of steady and highly
elongated profiles with pointed ends. Compared to λ = 1, a higher critical capillary number is
required for the breakup of a droplet when λ < 1, whereas it is difficult to achieve breakup of a
droplet when λ � 5. Depending upon the values of R and S, the behavior of a droplet in a confined
shear flow configuration gets altered under the influence of an electric field. We demonstrate this by
investigating the cumulative effect of electric field and shear flow on a droplet for λ = 0.1 and 10 at
Ca = 0.3 for cases A (R > S) and B (R < S).

Figure 8 shows the time evolution of deformation and orientation angle of the droplet corre-
sponding to case A for Ca = 0.3 at λ = 0.1 (represented by unfilled symbols) and 10 (represented
by filled symbols) for different values of CaE . In the absence of electric field (CaE = 0), the droplet
deforms into a steady prolate ellipsoid for both λ = 0.1 and 10. The change in deformation and
orientation angle of the for λ = 10 under the influence of electric field follows the same trend as
depicted in Fig. 5(d) (λ = 1). A continuous elongation and orientation of the droplet is observed
as CaE is increased from 0 to 0.2. Further, an increase in CaE from 0.2 to 0.425 results in droplet
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FIG. 7. Evolution of elongation and orientation angle of the droplet corresponding to case B (R = 0.1 and
S = 0.5) for [(a) and (b)] Ca = 0.2 and [(c) and (d)] 0.3, for CaE 0, 0.1, 0.2, 0.4, and 0.6, respectively. The
fluids are considered to have equal viscosity and the confinement ratio is considered to be fixed, ζ = 0.5.
The orientation angle decreases continuously as CaE increases. For low values of CaE , the droplet elongation
decreases with increase in CaE . The steady-state droplet profiles for Ca = 0.2 and 0.3 obtained for CaE = 0
and 0.6 are illustrated in the inset images of Figs. 7(b) and 7(d).

breakup, which otherwise is difficult to obtain in the absence of an electric field. Similar to the
results obtained with λ = 10, deformation and orientation angle for λ = 0.1 increase as CaE is
increased from 0 to 0.2. However, a damped oscillatory behavior is observed at CaE = 0.425 and
the droplet breakup occurs at CaE = 0.50 for λ = 0.1. This further suggests that, for a fixed Ca,
the critical CaE required for the droplet breakup is a function of λ. Other than λ, the critical CaE

required for the droplet breakup also depends upon the confinement ratio. We have highlighted the
variation in critical CaE with confinement ratio ζ by comparing the droplet behavior in confined and
unconfined flows for fluids corresponding to case A (R > S) at λ = 0.1 and 10 in the Appendix.

The transformation of droplet shape for the system with λ = 0.1 and 10 are shown in Figs. 9
and 10, respectively. For both systems, the time instant t∗ = 0 represents the initial configuration
of the droplet. As shown in Fig. 9, the droplet elongation increases and the droplet evolves from
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FIG. 8. Effect of viscosity ratio on the (a) deformation and (b) orientation angle of the droplet correspond-
ing to case A (R > S) at Ca = 0.3. Highly viscous droplets are denoted by filled symbols, whereas less viscous
droplets are represented by unfilled symbols. For λ = 0.1 and 10, the droplet elongation and rotation toward
the transverse direction increase with increase in CaE . For λ = 0.1 and 10, the droplet breakup occurs at CaE

= 0.5 and 0.425, respectively. The inset image of Fig. 8(a) depicts the droplet profile at steady state and close
to droplet breakup for λ = 0.1 and 10.

rounded to pointed at the extremities with increase in CaE for λ = 0.1. This can be visualized by
comparing the droplet profile of λ = 0.1 for CaE = 0.2, 0.425 and 0.50 at t∗ = 6. While a steady
shaped droplet profile is obtained at CaE = 0.2, a damped oscillatory behavior is observed for

t* = 0 t* = 6 t* = 13.13 t* = 22.7

t* = 0 t* = 6 t* = 22.7 t* = 34.6

t* = 0 t* = 6 t* = 20.3 t* = 22.7

(a) CaE = 0.2

(b) CaE = 0.425

(c) CaE = 0.50

FIG. 9. A sequence of shape evolution of a leaky dielectric droplet at Ca = 0.3, λ = 0.1, and ζ = 0.5 for
CaE = (a) 0.2, (b) 0.425, and (c) 0.50. The fluids represent case A where R > S (R = 10 and S = 2). Figure 9(a)
shows the evolution of the droplet shape into a prolate ellipsoid with its major axis inclined at an angle with
the flow field direction. At CaE = 0.425, the droplet displays a damped oscillatory behavior before attaining
a steady shape. Further increase in CaE results in the binary breakup of the droplet and indicates a shift in the
critical capillary number required for the droplet breakup in the absence of an electric field.

033701-13



SINGH, BAHGA, AND GUPTA

t* = 0 t* = 15.5 t* = 32.22 t* = 44.15

t* = 0 t* = 15.5 t* = 17.9 t* = 23
(a) CaE = 0.2

(b) CaE = 0.425

FIG. 10. Interface evolution of a leaky dielectric droplet at Ca = 0.3, λ = 10, and ζ = 0.5 for CaE = (a)
0.2 and (b) 0.425. The fluids corresponds to case A where R > S (R = 10 and S = 2). Figure 10(a) shows the
transformation of the droplet shape into a prolate ellipsoid with rounded ends. As CaE is increased, the droplet
elongation and binary breakup of the droplet occurs at CaE = 0.425. The breakup of highly viscous droplet at
lower value of CaE as compared to less viscous droplet (Fig. 9) indicates that it is easier to break highly viscous
droplet in a confined geometry under the combined influence of electric field and shear flow than a less viscous
droplet.

CaE = 0.425 [Fig. 9(b)], where the droplet retracts from a sigmoidal shape (at t∗ = 13.13) to an
ellipsoid (at t∗ = 22.7) before attaining a steady shape. For CaE = 0.50, the droplet elongates into
a sigmoidal shape with the ends separated from each other by a neck. The continuous elongation of
the droplet results in the thinning of the neck, thereby resulting in its breakup.

As depicted in Fig. 10 and similar to λ = 0.1, the droplet deformation increases with CaE for
λ = 10. However, and unlike λ = 0.1, the droplet ends maintain a bulging profile. The increase in
droplet deformation with CaE can be understood by comparing the droplet profile at t∗ = 15.5. For
CaE = 0.2, the droplet attains a steady shape, whereas for CaE = 0.425, a continuous stretching of
the droplet is observed, resulting in the formation of two “bulbs” separated from each other by an
unstable neck, which eventually breaks and results in the binary breakup of the droplet.

The time evolution of deformation and orientation angle of the droplet corresponding to case B
(R = 0.1 and S = 0.5) for CaE = 0, 0.2, 0.4 and 0.6 at Ca = 0.3 and λ = 0.1 and 10 are shown
in Fig. 11. The results for λ = 10 are denoted by filled symbols, whereas the results for λ = 0.1
are represented by unfilled symbols. The variation in orientation angle with CaE for λ = 0.1 and
10 show a trend similar to the results depicted in Fig. 7(d) (λ = 1). An increase in CaE enhances
the alignment of the droplet toward the mean flow direction, thereby reducing the orientation angle
of the droplet. The deformation induced in the droplet for λ = 0.1 and 10 with CaE also shows a
similar variation as observed in Fig. 7 (λ = 1). The droplet elongation decreases as CaE is increased
from 0 to 0.2 and an insignificant change in the droplet elongation is observed as CaE is further
increased. The steady prolate ellipsoid shaped droplet at CaE = 0.6 for λ = 0.1 and 10 are shown
as inset images of Fig. 11(a).

We now discuss the three-dimensional features of the drop which are not captured by two-
dimensional simulations. In particular, we highlight the evolution of the interface curvature in the
plane normal to the direction of flow for three scenarios leading to droplet breakup. Figure 12(a)
shows the schematic of the droplet in the plane normal to the direction of flow field (xy plane)
at z = 0. The solid lines denote the initial shape of the droplet and the dashed lines illustrate the
deformed profile of the droplet under the combined influence of electric and shear field.

Here b represents the minor axis of the droplet (neck diameter) in the z = 0 plane, which
decreases with time as the droplet elongates. Figure 12(b) shows the variation in the nondimensional
neck diameter (b/a) with time for λ = 0.1, 1, and 10 prior to the binary breakup of droplet. As the
droplet elongates, the radius of curvature in the z = 0 plane increases, thus leading to a decrease
in neck diameter with time. Further elongation of the droplet leads to a transition in the curvature
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FIG. 11. Effect of viscosity ratio on the (a) deformation and (b) orientation angle of the droplet cor-
responding to system B at Ca = 0.3. Highly viscous droplets are denoted by filled symbols, whereas less
viscous droplet is represented by unfilled symbols. For λ = 0.1 and 10, the droplet alignment toward the
horizontal direction continuously increases with increase in CaE . For λ = 0.1 and low values of CaE , the droplet
elongation decreases with increase in CaE , whereas for λ = 10 the droplet elongation decreases continuously
as CaE is increased from 0 to 0.6. The inset image of Fig. 11 depicts the steady-state profiles of the droplet at
CaE for λ = 0.1 and 10, respectively.

(concave to convex), resulting in the narrowing of the neck at the droplet center. The variation in
b/a with time follows the same pattern for λ = 0.1, 1, and 10. However, the time required for the
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FIG. 12. Effect of curvature on the binary breakup of a droplet along the plane normal to the direction
of flow field. Figure 12(a) illustrates the schematic of droplet in xy plane at z = 0 and Fig. 12(b) shows the
variation in droplets minor axis in z = 0 plane with time for λ = 0.1, 1, and 10.
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FIG. 13. Charge distribution and the resulting electric force distribution acting on the droplet interface in
the presence of an electric field. (a) For case A, the upper (lower) half of the droplet is negatively (positively)
charged, causing the electric field lines to converge toward (move away) from the upper (lower) half of the
droplet interface. (b) For case B, positive (negative) charge resides on the upper (lower) half of the droplet
interface, resulting in the divergence (convergence) of the field lines toward the droplet. [(c) and (d)] The
resultant electric force FE for case A (B) acts away (toward) the droplet. The inset image highlights that the
resultant electric force can be resolved along the vertical FE ,y and horizontal component FE ,x .

breakup of the neck increases with λ. The inset images depict the droplet profiles at different time
instance for λ = 1.

Overall, the following conclusions can be drawn from the deformation and breakup behavior
observed in Figs. 5–11. First, irrespective of the viscosity ratio, the droplet corresponding to R > S
shows analogous behavior with a droplet placed in shear flows for Re > 1 in the absence of an
electric field. Second, the deformation and orientation angle of the droplet corresponding to R > S
increases with increase in CaE . In contrast, the orientation angle of the droplet corresponding to
R < S decreases as CaE increases, whereas the droplet elongation varies insignificantly. Lastly,
the breakup of a droplet for λ = 10 corresponding to R > S can be attained under the combined
influence of electric field and shear flow, which otherwise are very difficult to break in shear flows
(CaE = 0). The mechanism explaining the results reported in Figs. 5–11 is now presented.

V. DROPLET DEFORMATION AND BREAKUP MECHANISM

To gain insight into the mechanism of droplet deformation and breakup, the charge distribution
and the electric force acting on the droplet corresponding to cases A (R > S) and B (R < S) are
analyzed and shown in Fig. 13. In case A (B), the disparity in electrical properties of the fluids
results in the development of negative (positive) and positive (negative) charges at the upper (lower)
and lower (upper) halves of the droplet interface, shown in Figs. 13(a) and 13(b). The resulting
charge distribution in case A causes the electric field lines to become narrower at the upper and
separate out from the lower half of the droplet interface. On the other hand, for case B the electric
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FIG. 14. Velocity vectors and contours of pressure developed in fluids corresponding to system A with the
variation of CaE at Ca = 0.3. For all viscosity ratios, with increase in CaE the droplet stretches toward the
electrode, leading to an increase of pressure near the droplet ends.

field lines separate out from the upper half and become narrower at the lower half of the droplet
interface.

Figures 13(c) and 13(d) illustrate the electric force acting at the droplet interface. In case A, the
resultant electric force FE points outward, whereas the direction of FE is opposite in case B. Owing
to the orientation of the droplet, the resultant electric force is decomposed along the vertical (FE ,y)
and horizontal (FE ,x) directions, as shown in the inset of Figs. 13(c) and 13(d). In case A, FE ,y tends
to pull the droplet toward the electrode, whereas FE ,y in case B pushes the droplet away from the
electrode. On the other hand, FE ,x in both the case A and case B tends to stretch the droplet toward
the mean flow direction.
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FIG. 15. Variation of shear rate near the droplet poles with increase in CaE for R > S at Ca = 0.3 and
λ = 1.
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FIG. 16. Evolution of (A) pressure and velocity vectors and (B) variation of shear rate near the droplet
poles at Ca = 0.3 for fluids corresponding to case B (R < S) with CaE . For all viscosity ratios, with increase
in CaE the droplet poles orient toward the horizontal direction, thereby leading to an increase in the gap size
between the droplet poles and electrode. As a result, negligible pressure build up occurs near the droplet poles.
Further, an increase in CaE leads to a decrease in shear rate exerted by continuous fluid on the droplet poles
with increase in CaE .

The physical mechanism for the deformation or breakup of the droplet is explained as follows.
In the absence of an electric field, the hydrodynamic forces tend to deform a droplet into a prolate
ellipsoid with its axis along with the shear direction. The presence of an electric field modifies
the system dynamics depending upon the conductivity and permittivity ratios of the fluids. In the
case of fluids with R > S (case A), FE ,y pulls the droplet toward the electrode, thereby leading to
an increase in the orientation angle of the droplet. This in turn obstructs the flow of continuous
fluid, resulting in an increase of pressure near the droplet poles. Figure 14 illustrates the pressure
induced in the continuous fluid for Ca = 0.3 at CaE = 0, 0.2, 0.4, and 0.6, respectively. For all
the viscosity ratios, it is evident that the area for the continuous fluid to pass through between the
droplet poles and the electrode decreases as CaE increases, resulting in an increase of pressure
just upstream of the droplet poles. This buildup of pressure forces the droplet to orient away from
the electrode. Further, as illustrated by the velocity vectors in Fig. 14, regions of high velocity are
created in the area between the droplet ends and electrode with increase in the droplet elongation.
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FIG. 17. Schematic illustration of the effective deformation induced in the droplet under the combined
influence of electric field and shear flow for (a) R > S and (b) R < S.

This suggests that the shear rate near the droplet pole increases with increase in CaE . To support
this, a comparison of nondimensional shear rate (a/uo)du/dz versus z/a near the lower bottom of
the droplet pole corresponding to CaE = 0, 0.2, 0.4, and 0.6 at Ca = 0.3 is presented in Fig. 15. As
shown, the shear rate increases as CaE increases and shows variation over a narrow zone. Thus, an
increase in CaE in turn increases the shear force acting on the droplet interface, thereby leading to
the increase in stretching of the droplet along the flow direction. This resulting interplay of electric
and hydrodynamic forces (comprising pressure, interfacial, and viscous forces) acting on the droplet
interface eventually leads to an equilibrium shape or breakup of the droplet.

For R < S (case B), the vertical component of electric force FE ,y pushes the droplet away from
the electrodes. As a result, the droplet aligns itself toward the mean flow direction. Unlike case
A, with increase in the strength of electric field the droplet poles move away from the electrodes,
resulting in negligible pressure build. For R < S, Fig. 16(a) illustrates the pressure variation near
the droplet interface at Ca = 0.3 and λ = 0.1, 1, and 10, by varying CaE from 0 to 0.6. Further, the
decrease in orientation angle of the droplet aligns the droplet poles in the region of low velocity.
This suggests that in case B the shear rate of continuous fluid near the droplet poles decreases with
increase in CaE for all the viscosity ratios. As an illustration, the variation of nondimensional shear
rate (a/uo)du/dz versus z/a for Ca = 0.3 and CaE = 0, 0.2, 0.4, and 0.6 at λ = 1 is depicted in
Fig. 16(b). As shown, the shear rate decreases as CaE is increased from 0 to 0.2 and any further
increase in CaE leads to a negligible change in the shear rate. Thus, an increase in CaE reduces the
shear force and enhances FE ,x acting on the droplet interface. This competing effect of shear and
electric stresses acting on the droplet interface results in an equilibrium shape of the droplet.

VI. GENERALIZED DROPLET BEHAVIOR

A generalized explanation describing the deformation of droplet under the cumulative effect
of electric and hydrodynamic force on the droplet elongation for R > S and R < S is illustrated
in Fig. 17. The deformation induced in the droplet due to shear stress is represented by DS and
deformation due to electric stress is denoted by DE . As shown in Fig. 15, the shear rate at the
droplet interface for R > S increases with CaE . Thus, in the case of R > S for a fixed Ca, the
combined action of electric and shear force always increases DS,E , as illustrated in Fig. 17(a).
For R < S, the shear rate at the droplet interface decreases with an increase in CaE and beyond
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a certain value of CaE (Ca∗
E ) the change in shear rate becomes insignificant [Fig. 16(b)]. Therefore,

the cumulative effect of shear and electric stress on the droplet deformation for R < S is classified
into two regimes, as shown in Fig. 17(b). For CaE < Ca∗

E (regime 1), DS varies inversely with CaE

and the cumulative effect of DS and DE leads to DS,E < DS . As CaE approaches Ca∗
E , the decrease

in DS is counterbalanced by the increase in DE , thereby leading to an insignificant change in DS,E .
In regime 2 (CaE > Ca∗

E ), DS is a weak function of CaE , where a negligible change in DS occurs
with an increase in CaE . Hence, the effective droplet elongation DS,E in regime 2 is governed by
DE , which rises as CaE increases.

VII. CONCLUSIONS

In this paper, the deformation and breakup behavior of a leaky dielectric droplet immersed in
a confined shear flow and subjected to an electric field has been reported. A three-dimensional
coupled leaky dielectric multicomponent lattice Boltzmann method has been employed to perform
simulations. For a fixed channel confinement and widely different viscosity ratios, the electrohy-
drodynamic behavior of the droplet was examined for two different combinations of electrical
properties, R > S and R < S. For R > S, irrespective of the viscosity ratio, the application of
electric field increases the deformation and orientation of the droplet toward the direction of applied
electric field. The increase in orientation angle of the droplet is in agreement with the experimental
observations of Allan and Mason [11], which showed that the droplet orientation increases toward
the direction of electric field in an unconfined domain. The rotation of the droplet toward the
direction of electric field increases the strain rate of the continuous fluid near the droplet poles,
thereby leading to an increase in the droplet elongation along the mean flow direction. Further, as
electric field (CaE ) was increased beyond a threshold value (CaE ,crit ), the breakup of droplet into
smaller droplets was observed. In particular, the application of electric field leads to the breakup of
droplets where λ > 5, which are otherwise difficult to break in simple shear flows. The threshold
value of electric field strength was observed to depend on the capillary number (Ca) and viscosity
ratio (λ). Moreover, the deformation and breakup behavior of the droplet was observed to be
analogous to a droplet placed in shear flow for Reynolds number Re > 1.

For R < S, the application of electric field results in the rotation of the droplet toward the
mean flow direction, leading to a decrease in the orientation angle of the droplet with an increase
in CaE . Again, these simulation predictions are in agreement with the experimental observations
of Allan and Mason [11]. For all viscosity ratios, the application of electric field results in a
nonmonotonic variation in the droplet elongation. The elongation induced in the droplet depends
upon the competing effects of electric and shear stresses acting at the droplet interface. For each
viscosity ratio, below a certain value of CaE (<Ca∗

E ), the cumulative effect of electric and shear
stresses results in either reduction or negligible variation in the droplet elongation with electric
field. On the other hand, for CaE > Ca∗

E , the droplet elongation increases with increase in CaE .
The critical electric capillary number required for the droplet breakup varies with confinement.

The variation of critical electric capillary number with confinement ratio will be pursued in a future
study. Further, scenarios where the charge relaxation time is comparable or more than the viscous
relaxation time should also be considered and the resulting effect on the droplet behavior needs to
be examined.

APPENDIX

The behavior of a droplet suspended in a pure shear flow configuration is significantly influenced
by the effect of confinement [8–10]. The increase in confinement inhibits the breakup tendency of
a droplet with viscosity less than the surrounding fluid. On the other hand, it promotes breakup of
a droplet with viscosity much higher than the outer medium [10]. The effect of confinement on a
droplet suspended under the combined influence of an electric field and shear flow are reported here.
The simulations were performed for λ = 0.1 and 10, and the confinement effects were examined
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FIG. 18. Effect of confinement on the deformation and orientation induced in a less viscous droplet under
the cumulative effect of electric field and shear flow for Ca = 0.3, CaE = 0.3, and λ = 0.1. The unconfined
domain is denoted by unfilled symbols, whereas the filled symbols represent a confined domain. The inset
image depict the steady droplet shape obtained in case of confined geometry and the droplet profile prior to
breakup in case of the unconfined domain.

for ζ = 0.25 and 0.50. For the sake of clarity, we refer to the confinement ratio ζ = 0.25 as that
corresponding to an unconfined domain, whereas ζ = 0.50 represents a confined domain.

Figure 18 shows the shape evolution and instantaneous orientation angle of the droplet cor-
responding to R > S (case A) for Ca = 0.3 at λ = 0.1 and CaE = 0.3. The unfilled symbols
denote an unconfined domain (ζ = 0.25) and the confined domain (ζ = 0.50) is depicted by filled
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FIG. 19. Effect of confinement on the deformation and orientation induced in a highly viscous droplet
under the cumulative effect of electric field and shear flow for Ca = 0.3, CaE = 0.425, and λ = 10. The
unconfined domain is denoted by unfilled symbols, whereas the filled symbols represent a confined domain.
The inset images depict the droplet profile prior to binary breakup obtained in the case of confined geometry
and the steady droplet profile obtained in the case of the unconfined domain.
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symbols. For ζ = 0.50, the droplet elongation increases with time [Fig. 18(a)] and eventually
attains a steady ellipsoidal profile. The results of the droplet orientation for the same scenario
are shown in Fig. 18(b) where the droplet orientation initially increases (up to a maximum value)
and subsequently decreases. This signifies that the droplet orients along the flow direction before
achieving a steady profile. As compared to ζ = 0.50, a significant increase in the droplet elongation
is observed for ζ = 0.25. Similarly, after attaining a peak elongation value, the droplet continues
to orient along the mean flow direction. The continuous elongation of the droplet results in the
formation of a neck at the droplet center, eventually leading to breakup. The inset images in Fig. 18
illustrate the steady droplet shape and droplet profile prior to breakup. This contrasting behavior of
the droplet under identical conditions for different confinement ratios suggests that an increase in
confinement inhibits breakup when λ < 1. This observation is also in agreement with the behavior
in pure shear flows as mentioned above [10].

Figure 19 shows the time evolution and orientation angle of the droplet corresponding to R > S
(case A) for Ca = 0.3 at λ = 10 and CaE = 0.425. Again, the unfilled symbols denote an unconfined
domain (ζ = 0.25) and the confined domain (ζ = 0.50) is depicted by filled symbols. For ζ = 0.25,
the droplet undergoes continuous elongation [Fig. 19(a)] and attains a steady ellipsoidal profile with
its major axis inclined at an angle with the flow field direction. The time evolution of the droplet
orientation with the flow field direction is shown in Fig. 19(b). In the case of ζ = 0.50, on the other
hand, the droplet undergoes continuous elongation and eventually breaks up into smaller droplets.
The opposite behavior in droplet deformation at λ = 10 for different confinement ratios indicates
that the increase in confinement enhances the tendency of the droplet to undergo breakup. This is
again in agreement with the results of pure shear flows as mentioned above [10].
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